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w In an i ncompres s ib l e  liquid, filling the whole space  outside of the finite region K (with a sufficiently 
smooth  c losed su r face  0K), let the re  be given a f ield of the ve loc i t ies  v( r ,  t), sa t i s fy ing the following conditions: a) 
suff icient  smoothness ;  b) div v = 0 ;  c) Iv(r)[ ~ c o n s t / r  l+e, [rot v[ ~ c o n s t / r  4+e with r = Ir[ ~ o  with smal l  ~ > 0. 

We denote by n the externa l  normal  to 0K, and by G the reg ion  filled with the l iqu id .  Let  the liquid den- 
s i ty  p = 1. It is convenient  to use  the following r ep re sen t a t i on  for  v(r ,  t); 

v(r) = grad cp + rot A; (1.1) 

i + (r) = -  d S ,  

(1.2) 
= i ^ + ~ •  dS], 

where  s = [r - ~ !; the symbo l  n ^ ,  denotes  v a r i a b l e s  with r e s p e c t  towhich  in tegra t ion  is c a r r i e d  out; w - rot  v. 

This  r e p r e s e n t a t i o n  for  the ease  of a finite G is given in [1]; for  an  infinite region G it is p roved  by a 
d i rec t  ca lcu la t ion  [subst i tut ion of (1.2) into (1.1)], taking account  of l imi ta t ions  on the asympto t ic  of the field 
of the veloci ty .  Here  a f o rm a l  ca lcula t ion gives v(r) -= 0 in the region K outside the liquid. 

The l a t t e r  shows that  the flow in G can  be in tegra ted  as the flow in the whole space ,  obtained by "fil l ing" 
of the region K with a liquid at res t .  Under  these  c i r c u m s t a n c e s ,  at OK the re  is a discontinuity of both the 
tangent ia l  and no rma l  components  of the velocity,  cor responding  to the d is t r ibut ion (1.2) of the vor t i ces  of 
the densi ty  n x  v and s ou rce s  of the densi ty  n .v  at OK. 

Natural ly ,  the region K can  be filled in any o ther  a r b i t r a r y  way (not n e c e s s a r i l y  by a liquid at  res t ) ;  
under  these  c i r c u m s t a n c e s ,  the re  is a change in the dis t r ibut ion of the vor t i ces  and sources  in (1.2). 

However ,  the r e p r e s e n t a t i o n  (1 .2)has  the advantage that  the "fi l l ing" of K with a liquid at r e s t  does not 
change the to ta l  m o m e n t u m  of the flow, which will be impor tant  in what follows with a genera l i za t ion  of the 
concept  of m o m e n t u m .  

w Momentum of Flows of an Incompres s ib l e  Liquid. The usual definit ion of the momen tum of a flow, 
which we shall  ca l l  the  " t rue"  m o m e n t u m  I, has the fo rm 

I =  t 'vdV, ,y. (2.1) 

where  V 0 is the volume occupied by the liquid; v =v(r ,  t) is the field of the veloci ty.  

This  definit ion is appl icable  for  both finite and infinite V0, with the condition of the absolute  convergence  
of the in tegra l  (2.1). 

However ,  in the case  of a liquid filling the whole space  outside some  l imi ted  s y s t e m  of bodies,  the inte-  
g ra l  (2.1), fo r  flows having a d ipolar  a sympto t i c ,  does not converge  absolute ly .  Its value is found to depend 
on the m a n n e r  in which the volume of the in tegra t ion  approaches  infinity. In the ca se  of absolute  convergence  
of (2.1) fo r  a liquid filling the whole space,  I = 0 ;  i .e. ,  for  all  such flows with a ze ro  momen tum,  the definition 
(2.1) has no meaning.  
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TherefOre ,  fo r  the c a s e  of a liquid filling the whole space,  the vor t ica l  momen tum was introduced [2]: 

P = + S r  • (odV. (2.2) 

It is well  known that  the vec to r  P, having the d imensions  of momen tum,  is conse rved  fo r  flows of both 
v iscous  (Stokes) and ideal i ncom pres s i b l e  liquids in the absence  of nonpotential  f o r ce s  [3]. 

Let  us now examine  a flow of the type descr ibed  in Sec. 1. In a conc re t e  rea l i za t ion  of this  flow, the 
region K can  be e i ther  a c a v e r n  (cavity) o r  a solid or  deformed body. In accordance  with the method adopted 
in S e c . !  for  reducing the flow under  cons ide ra t ion  to a flow in the whole space,  without a change in the total  
m o m e n t u m  of the flow, we pos tu la te  that,  to de te rmine  the vor t i ca l  momen tum,  it is suff icient  to u s e  in (2.2) 
the field of the  vor tex  f r o m  (1.2). This  field cons i s t s  of the d is t r ibut ion of ~ in G and the su r face  dis t r ibut ion 
of the densi ty  of n • v a t  OK. 

Then the  definit ion of the vor t i ca l  m om en tum a s s u m e s  the fo rm 

P = .~ -  r • o )dV -[- r • (n • v) d S  . (2.3) 

We shal l  p rove  the c o r r e c t n e s s  of th is  definit ion by a t h e o r e m .  

THEOREM 1. In the reg ion  G let  t h e r e  be given a flow of an i ncompres s ib l e  viscous  (obeying the N a v i e r -  
Stokes equations) liquid, such that  the region K and the  field of the veloci t ies  v(r ,  t) sa t i s fy  the conditions f o r -  
mulated in Sec. 1. In addition, let  the mot ion  take  p lace  in a field of g rav i ty  g =const .  Then, for  the vor t ica l  
m o m e n t u m  (2.3) we have 

dPt 
d~: = - -  g y  - -  (~t~'nkdS' (2.4) 

oK 
where  ~ik = - -pS ik  § v(Ovi/Oxk + Ovh/Oxi); V is the volume of the reg ion  K; v is the coeff icient  of k inemat ic  
v i scos i ty ;  p is the p r e s s u r e .  He re  we use  the  summat ion  law fo r  repea ted  indices .  The t h e o r e m  is val id  for  
both v i scous  and ideal  l iquids.  

Proof .  In t e n s o r  f o r m  (2.3) a s s u m e s  the f o r m  

2P, = i' + ( 2 . 5 )  
"0 oK 

where  elk / is a unit a n t i s y m m e t r i c a l  t e n s o r  of the third rank.  

We take  the N a v i e r - s t o k e s  equation in the f o r m  

dvn Op 0~% 

dt = --  ~ + g" + v ~ ,  (2.6) 
d% Ov a 0% 02% 

= -  

We di f fe ren t ia te  (2.5) with r e s pec t  to the t ime ,  taking into cons ide ra t ion  that  G is the liquid volume,  OK is the 
liquid su r f ace .  Under  t he se  c i r c u m s t a n c e s ,  we use  the well  known ru les  of d i f ferent ia t ion  with r e spec t  to 
liquid conf igurat ions  [4] and Eqs.  (2.6). With a t r ans i t ion  f r o m  su r face  in tegra ls  to vo lumet r ic  in tegra ls ,  and 
the r e v e r s e ,  we use  the bounded c h a r a c t e r  of the a sympto t i c  of the field of the velocity,  shown in Sec. 1. Af te r  
r a t h e r  c u m b e r s o m e  t r a n s f o r m a t i o n s ,  we obtain (2.4), where  the f i r s t  t e r m  on the r ight-hand side is t h e A r c h i -  
m e d e s  fo rce  and the  second the fo rce  act ing f r o m  the s ide  of the reg ion  K on the liquid surrounding it. ff the 
s y s t e m  is at  r e s t ,  then dP i /d t  = 0, and we obtain the c l a s s i c a l  A r c h i m e d e s  law. 

Thus,  the change in the  vor t i ca l  m o m e n t u m  (2.3) t akes  p lace  in accordance  with laws analogous to the 
laws of the change in the t rue  m o m e n t u m  (where the l a t t e r  exis ts ) .  

In the p r a c t i c a l l y  impor tan t  ea se  of the  f loat ing-up of the cavi ty ,  Eq. (2,4) is wr i t t en  ve ry  s imply:  

d P J d t  = - - g i V .  

In the c a s e  of the  mot ion  of a solid body in a liquid, it is  convenient  to introduce the to ta l  m o m e n t u m  R of the 
s y s t e m  solid body - l i qu id :  

. } R = m U  .q- r • o ) d V  -~- r • (n • v) dS , (2.7) 
BK 

where  m is the m a s s  of the body; U is the veloci ty  of the body. F o r  R, the following equali ty f r o m  (2.4) is valid: 
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dR/dt  = g(m - -  pV), 

where  p is the  densi ty of the liquid. 

In (2.7) the  f i r s t  t e r m  is the m o m e n t u m  of the body and the second the apparen t  momen tum fo r [he  case  
of vor t i ca l  f lows.  It can  be shown that ,  in the case  of potent ia l  flow, (2.7) a s s u m e s  the f o r m  

R = (m + t~)U, 

where/~  is the apparen t  m a s s  [4]; he re  

o~ K 1 f r]X (n X v)dS ~U ~--- e#nd8 ---- --~ 
Olf 

(r is the potent ia l  of the flow); i .e. ,  in this case ,  the m o m e n t u m  P coincides with the apparen t  momentum/~U. 

Let us now examine  a flow of an i ncompres s ib l e  unbounded liquid, with a vor t ic i ty  concent ra ted  in some  
finite reg ion  of the flow. Then fo r  an  a r b i t r a r y  finite region A, containing the whole vor t ic i ty ,  we have 

i S  ~ 1 y P =  r • todV = v d V  -t--~- r • 2 1 5  d3. (2.8) 
A 0A 

This re la t ionship  may  be ass igned  the following meaning:  If in the liquid a c losed su r face  can  be t r a ced  
outside of which o~ = 0, then the vor t i ca l  m omen tum of the flow is r ep re sen t ed  in the f o r m  of the inherent  m o -  
men tum of the g iven amount of liquid and i ts  additional m o m e n t u m .  

It is welt  known that  with the mot ion  of s t e a d y - s t a t e  vor t ica l  r ings  in an ideal i ncompres s ib l e  unbounded 
liquid, along with a r ing the re  moves  a c e r t a i n  liquid volume of unchanged f o r m  cal led the " a tmosphe re"  of 
the vor t ica l  r ing.  

We r ep l ace  this volume by a solid body, having a density equal to the densi ty of the liquid, leaving the 
remain ing  p a r t  of the flow unchanged. 

The equali ty (2.8) enables the following quest ion f r o m  [5] to be answered:  Will the vor t ica l  momen tu m 
(2.2) of a vor tex  r ing be equal to the total  m omen tum (2.7) of the b o d y - l i q u i d  s y s t e m  ? 

Taking as A in (2.8) the " a t m o s p h e r e "  of the vor t ica l  r ing, and using P =~tU, as  has been  noted ea r l i e r ,  
the quest ion posed can  be answered  in the a f f i rma t ive .  

w Vor t ica l  Momentum of an Inhomogeneous Incompres s ib l e  Liquid. Let  us gene ra l i ze  the definit ion of 
the vor t i ca l  mome n t um  (2.2) for  the ease  of flows of an i ncompres s ib l e  unbounded liquid with p r cons[; we 
obtain the e x p r e s s i o n  

t r P = -~-J  r • rot pvdV. (3.1) 

The l imi ta t ions  which were  imposed on the field of the veloci t ies  mus t  now be laid on the field p v ,  with 
the exception that  in (3.1) t he re  is the poss ib i l i ty  of a discontinuity of p at some  liquid sur face ,  not depar t ing to infinity 
(s t rat i f ied flows). In the l a t t e r  case ,  su r face  in tegra l s  appea r  in (3.1), s ince di f ferent ia t ion of the exponential  
function gives  a 5 function at the co r respond ing  s u r f a c e s .  Let the discontinuity of p occur  at the su r face  C. 
Then (3.1) a s s u m e s  the f o r m  

where  [p ] is the discontinuity of p at C; n is a normal  to C; the f i r s t  in tegral  is t aken  ove r  the whole space,  
including C. This  way of wri t ing the m o m e n t u m  is appl icable ,  for  example ,  for  vor t ica l  r ings with a co re  
made  of a m a t e r i a l  dif ferent  f r o m  the surrounding medium.  

The c o r r e c t n e s s  of the definit ion (3.1) is shown by the dynamic equation for  P, having the f o r m  

dP y {p (r) dt = - - g  - -  p(oo)}dV, 

with the asympto t i c  l imi ta t ions  on 

The liquid can  be e i the r  v iscous  or  ideal .  

[p(r) - -  p (~ ) l r '  - ~  0 as r -~ ~ .  

The proof  is c a r r i e d  through analogously to the proof  of T h e o r e m  1. 

793 



w The Moment  of Momentum of an Incompress ib l e  Liquid. Analogously to the definit ion of the m o m e n -  
tum d i scussed  in the p r e s e n t  a r t i c l e ,  the m omen t  of momen tum of the flow outside the bounded region K can  
be cons idered ,  using the definit ion fo r  the momen t  of momen tum of a liquid fil l ing the whole space  [4]: 

M = T  r X (r X ~)dV ( p = i ) .  

To obtain the m om en t  of  m o m e n t u m  for  the flow outside of K he re  it is suff icient  to subst i tute  the d i s t r i -  
bution of the vor t i ces ,  containing the su r f ace  dis t r ibut ion of the densi ty n •  v at OK. Then 

M-----T r X(rX(o) d g +  r x  (rX(n Xv))dS.  

The dynamic  equation fo r  M is wr i t t en  in the f o r m  
dMl 
dt ~ - - -  ei~txa~lpnpdS" 

OK 

This  equat ion is der ived  analogously  to the p roof  of T h e o r e m  1, with a lmos t  the s ame  l imi ta t ions .  

The genera l i za t ion  of the momen t  of m o m e n t u m  for  the case  of an inhomogeneous liquid is wr i t t en  in 
the f o r m  

M= - f f -  r X ( r x r o t p v )  dV. 

The d i scuss ion  and jus t i f ica t ion  of this  definit ion a r e  analogous to the d i scuss ion  in Sec. 3. 

In conclusion,  let  us dwell on an  evaluat ion of the l imita t ions  adopted on the asympto t i c  of the field of 
the veloci ty  

Iv(r, t)]r --~ 0 as r -~ cr 

Such a l imi ta t ion  is na tura l  for  flows of an ideal  liquid with an asympto t ic  vor t ic i ty  [co(r, t)t ~ c~(t)/r TM (~ ~ O) 
and al lows of the p r e s e n c e  of s ou rce s  in the bounded region,  i .e . ,  a change in the volume of the region K. 

In the ca se  of a v iscous  liquid, such l imi ta t ions  a r e  not obvious.  Thus,  with s t e a d y - s t a t e  flow of a v i s -  
cous liquid around a body, behind the body t he r e  is a wake region,  in which [vl ~c2 / r  with r -oo  [6]; i .e. ,  the 
pos tu la t ion  is not  sa t i s f ied;  c 1 and c 2 a r e  a r b i t r a r y  bounded functions of the t ime ,  not depending on the co-  
o rd ina tes .  

However ,  on the o ther  hand, the concept  of vor t i ca l  m o m e n t u m  cannot be applied to the fully es tabl i shed 
flow of a v iscous  liquid around a solid body, s ince a finite fo rce ,  act ing on the liquid fo r  the cou r se  of an in-  
finite nes tabl ishment  t ime , "  mus t  lead, in accordance  with (2.4), to an infinite vor t ica l  m o m e n t u m  of the liquid. 
Thus,  in the case  of a v iscous  liquid, the above d i scuss ion  is valid only for  finite in te rva l s  of t ime,  f r o m  the 
momen t  of the  s t a r t  of the motion.  

The au thor  wishes  to thank B. A. Lugovtsov for  posing these  quest ions .  
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