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VORTICAL MOMENTUM OF FLOWS OF AN
INCOMPRESSIBLE LIQUID

V. A. Vladimirov UDC 532,51

§1. In an incompressible liquid, filling the whole space outside of the finite region K (with a sufficiently
smooth closed surface 8K), let there be given a field of the velocities v(r, t), satisfying the following conditions: a)
sufficient smoothness; b) div v=0; c) [v(r)| ~const/r!*®, [rot v| ~const/r**€ with r= |r|—» with small & > 0,

We denote by n the external normal to 8K, and by G the region filled with the liquid.  Let the liquid den-
sity p=1, It is convenient to use the following representation for v{(r, t); .

v(r) = grad ¢ 4 rot A; : (1.1

t KBV
(‘P(l‘)=—'4—n— i;XdS,
b33

\ A(x) = Z%[i%dv+i“>§" dS],

where s=|r — T; the symbol " " denotes variables with respecttowhich integration is carried out; w= rot v.

{1.2)

This representation for the case of a finite G is given in [1]; for an infinite region G it is proved by a
direct calculation [substitution of (1.2) into (1.1)], taking account of limitations on the asymptotic of the field
of the velocity, Here a formal calculation gives v(r) = 0 in the region K outside the liquid.

The latter shows that the flow in G can be integrated as the flow in the whole space, obtained by "filling"
of the region K with a liquid at rest. Under these circumstances, at 9K there is a discontinuity of both the
tangential and normal components of the velocity, corresponding to the distribution (1.2) of the vortices of
the density nX v and sources of the density n-v at 9K,

Naturally, the region K can be filled in any other arbitrary way (not necessarily by a liquid at rest);
under these circumstances, there is a change in the distribution of the vortices and sources in (1.2).

However, the representation (1.2) has the advantage that the "illing" of K with a liquid at rest does not
change the total momentum of the flow, which will be important in what follows with a generalization of the
concept of momentum.

§2, Momentum of Flows of an Incompressible Liquid. The usual definition of the momentum of a ﬂow,
which we shall call the "true™ momentum I, has the form

1= {vay, @.1)

Ve
where V, is the volume occupied by the liquid; v=v(r, t) is the field of the velocity,

This definition is applicable for both finite and infinite V,, with the condition of the absolute convergence
of the integral (2.1).

However, in the case of a liquid filling the whole space outside some limited system of bbdies, the inte-
gral (2.1), for flows having a dipolar asymptotic, does not converge absolutely. Its value is found to depend
on the manner in which the volume of the integration approaches infinity, In the case of absolute convergence
of (2.1) for a liquid filling the whole space, I=0; i.e., for all such flows with a zero momentum, the definition
(2.1) has no meaning.
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Therefore, for the case of a liquid filling the whole space, the vortical momentum was introduced [2]:
i
P=T‘grxde. . (2.2)

It is well known that the vector P, having the dimensions of momentum, is conserved for flows of both
viscous (Stokes) and ideal incompressible liquids in the absence of nompotential forces [3].

Let us now examine a flow of the type described in Sec. 1. In a concrete realization of this flow, the
region K can be either a cavern (cavity) or a solid or deformed body. In accordance with the method adopted
in Sec. 1 for reducing the flow under consideration to a flow in the whole space, without a change in the total
momentum of the flow, we postulate that, to determine the vortical momentum, it is sufficient to use in (2.2)
the field of the vortex from (1.2). This field consists of the distribution of @ in G and the surface distribution
of the density of nX v at 8K. ) ’

Then the definition of the vortical momentum assumes the form
. .
P=T{£rxde+£rx(nXV)dS}. (2.3)

We shall prove the correctness of this definition by a theorem.

THEOREM 1, Inthe region G let there be given a flow of an incompressible viscous (obeying the Navier—
Stokes equations) liquid, such that the region K and the field of the velocities v(r, t) satisfy the conditions for-
mulated in Sec. 1. In addition, let the motion take place in a field of gravity g =const, Then, for the vortical
momentum (2.3) we have

dpP
LR, @c;hnkds, (2.4)
oK
where o;, = —pb;, + v(0v;/8x, -+ Ov,/8z;); V is the volume of the region K; v is the coefficient of kinematic

viscosity; p is the pressure, Here we use the summation law for repeated indices. The theorem is valid for
both viscous and ideal liquids.

Proof, Intensor form (2.3) assumes the form
2P; = \ ;0 dV 4+ j &1 hi€mn TVt dS, 2.5)
G 8K

where &gy is a unit antisymmetrical tensor of the third rank,

We take the Navier—Stokes equation in the form

dv F} %
2= P g D
dt oz, 8n 9z 0z " (2.6)
do ov_ v 020 :
—t = — £ e _n. »V._..._l._'
dt tmn gz 0z, ' " 0z,0%,

We differentiate (2.5) with respect to the time, taking into consideration that G is the liquid volume, 9K is the
liquid surface. Under these circumstances, we use the well known rules of differentiation with respect to
liquid configurations [4] and Egs. (2.6). With a transition from surface integrals to volumetric integrals, and
the reverse, we use the bounded character of the asymptotic of the field of the velocity, shown in Sec. 1. After
rather cumbersome transformations, we obtain (2,4), where the first term on the right-hand side is the Archi-
medes force and the second the force acting from the side of the region K on the liquid surrounding it. If the
system is at rest, then dP;/dt =0, and we obtain the classical Archimedes law.

Thus, the change in the vortical momentum (2,3) takes place in accordance with laws analogous to the
laws of the change in the true momentum (where the latter exists).

In the practically important case of the floating-up of the cavity, Eq. (2.4) is written very simply:
dpl/dt = _giV'
In the case of the motion of a solid body in a liquid, it is convenient to introduce the total momentum R of the

system solid body ~liquid:

R=mU+%{£r><de+afxrx(nx'v)ds}, @.7)

where m is the mass of the body; U is the velocity of the body. For R, the following equality from (2.4) is valid:
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dR/dt = g(m — pV),
where p is the density of the liquid.

In (2.7) the first term is the momentum of the body and the second the apparent momentum forthe case
of vortical flows, It can be shown that, in the case of potential flow, (2.7) assumes the form

R = (m + wU,
where U is the apparent mass [4]; here '

uU= 5. pndS =—%— Y r]X (n X v)dS
ox oK

(¢ is the potential of the flow); i.e., in this case, the momentum P coincides with the apparent momentum uU,

Let us now examine a flow of an incompressible unbounded liquid, with a vorticity concentrated in some
finite region of the flow. Then for an arbitrary finite region A, containing the whole vorticity, we have

P=-—é—5'rxa)dV=)§.vdV+-;-—a£rx(nxv)dS. (2.8)

This relat{onship may be assigned the following meaning: If in the liquid a closed surface can be traced
outside of which w =0, then the vortical momentum of the flow is represented in the form of the inherent mo~
mentum of the given amount of liquid and its additional momentum.

It is well known that with the motion of steady-state vortical rings in an ideal incompressible unbounded
liquid, along with a ring there moves a certain liquid volume of unchanged form called the "atmosphere™ of
the vortical ring.

We replace this volume by a solid body, having a density equal to the density of the liquid, leaving the
remaining part of the flow unchanged.

The equality (2.8) enables the following question from [5] to be answered: Will the vortical momentum
(2.2) of a vortex ring be equal to the total momentum (2.7) of the body—liquid system ?

Taking as A in (2.8) the "atmosphere" of the vortical ring, and using P=uU, as has been noted earlier,
the question posed can be answered in the affirmative.

§3. Vortical Momentum of an Inhomogeneous Incompressible Liquid, Let us generalize the definition of
the vortical momentum (2,2) for the case of flows of an incompressible unbounded liquid with o # const; we
obtain the expression

1
P:—Z—-Sr X rot pvdV. (3.1)

The limitations which were imposed on the field of the velocities must now be laid on the field pv, with
the exception that in (3.1) there is the possibility of a discontinuity of p at some liquid surface, not departingto infinity
(stratified flows). In the latter case, surface integrals appear in (3.1), since differentiation of the exponential
function gives a 6 function at the corresponding surfaces. Let the discontinuity of p occur at the surface C.
Then (3.1) assumes the form

P= %“r xrotpvdV—{—if[p]r X (an)dS},

where [p]isthe discontinuity of p at C; n is a normal to C; the first integral is taken over the whole space,
including C. This way of writing the momentum is applicable, for example, for vortical rings with a core
made of a material different from the surrounding medium.,

The correctness of the definition (3.1) is shown by the dynamic equation for P, having the form
P '
= —gf (o) —p(copay,

with the asymptotic limitations on

lo(r) — p{e0)|r* = 0 as 1 — oo,

The liquid can be either viscous or ideal. The proof is carried through analogously to the proof of Theorem 1
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84, The Moment of Momentum of an Incompressible Liquid. Analogously to the definition of the momen-
tum discussed in the present article, the moment of momentum of the flow outside the bounded region K can
be considered, using the definition for the moment of momentum of a liquid filling the whole space [4]:

M=—%—§rx (r X @)dV (p=1).

To obtain the moment of momentum for the flow outside of K here it is sufficient to substitute the distri-
bution of the vortices, containing the surface distribution of the density nx v at 8K. Then

M=%{£r X (r X 0)dV +6_<£rx (r X (n % v))dS}.

The dynamic equation for M is written in the form

i
——— 5. siklxhdlpnpds._

dt
oK
This equation is derived analogously to the proof of Theorem 1, with almost the same limitations,

The generalization of the moment of momentum for the case of an inhomogeneous liquid is written in
the form
=—;—5r X (r X rot pv) dV.

The discussion and justification of this definition are analogous to the discussion in Seec, 3.

In conclusion, let us dwell on an evaluation of the limitations adopted on the asymptotic of the field of
the velocity
v(r, )r— 0 as r— oo,

Such a limitation is natural for flows of an ideal liquid with an asymptotic vorticity lo(r, )] < c,(t)/ri+e (s > ()
and allows of the presence of sources in the bounded region, i.e., a change in the volume of the region K.

In the case of a viscous liquid, such limitations are not obvious. Thus, with steady~state flow of a vis~
cous liquid around a body, behind the body there is a wake region, in which |v|~c,/r with r—= [6]; i.e., the
postulation is not satisfied; ¢, and ¢, are arbitrary bounded functions of the time, not depending on the co-
ordinates.

However, on the other hand, the concept of vortical momentum cannot be applied to the fully established
flow of a viscous liquid around a solid body, since a finite force, acting on the liquid for the course of an in~
finite "establishment time," must lead, in accordance with (2.4), to an infinite vortical momentum of the liquid.
Thus, in the case of a viscous liquid, the above discussion is valid only for finite intervals of time, from the
moment of the start of the motion.

The author wishes to thank B. A. Lugovtsov for posing these questions,
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